ibuprofen kids fever

A team of engineers at the University of California San Diego has developed an electronic patch that can monitor biomolecules in deep tissues, including hemoglobin. This gives medical professionals unprecedented access to crucial information that could help spot life-threatening conditions such as malignant tumors, organ dysfunction, cerebral or gut hemorrhages and more.

“The amount and location of hemoglobin in the body provide critical information about blood perfusion or accumulation in specific locations. Our device shows great potential in close monitoring of high-risk groups, enabling timely interventions at urgent moments,” said Sheng Xu, a professor of nanoengineering at UC San Diego and corresponding author of the study.

The paper, prickly heat alternate medicine “A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature,” is published in the December 15, 2022 issue of Nature Communications.

Low blood perfusion inside the body may cause severe organ dysfunctions and is associated with a range of ailments, including heart attacks and vascular diseases of the extremities. At the same time, abnormal blood accumulation in areas such as in the brain, abdomen or cysts can indicate cerebral or visceral hemorrhage or malignant tumors. Continuous monitoring can aid diagnosis of these conditions and help facilitate timely and potentially life-saving interventions.

The new sensor overcomes some significant limitations in existing methods of monitoring biomolecules. Magnetic resonance imaging (MRI) and X-ray-computed tomography rely on bulky equipment that can be hard to procure and usually only provide information on the immediate status of the molecule, which makes them unsuitable for long-term biomolecule monitoring.

“Continuous monitoring is critical for timely interventions to prevent life-threatening conditions from worsening quickly,” said Xiangjun Chen, a nanoengineering PhD student in the Xu group and study co-author. “Wearable devices based on electrochemistry for biomolecules detection, not limited to hemoglobin, are good candidates for long-term wearable monitoring applications. However, the existing technologies only achieve the ability of skin-surface detection.”

The new, flexible, low form-factor wearable patch comfortably attaches to the skin, allowing for noninvasive long-term monitoring. It can perform three-dimensional mapping of hemoglobin with a submillimeter spatial resolution in deep tissues, down to centimeters below the skin, versus other wearable electrochemical devices that only sense the biomolecules on the skin surface. It can achieve high contrast to other tissues. Due to its optical selectivity, it can expand the range of detectable molecules, integrating different laser diodes with different wavelengths, along with its potential clinical applications.

Source: Read Full Article